Elastic deformation of soft membrane with finite thickness induced by a sessile liquid droplet.

نویسندگان

  • Ying-Song Yu
  • Ya-Pu Zhao
چکیده

In this paper, the role of vertical component of surface tension of a droplet on the elastic deformation of a finite-thickness flexible membrane was theoretically analyzed using Hankel transformation. The vertical displacement at the surface was derived and can be reduced to Lester's or Rusanov's solutions when the thickness is infinite. Moreover, some simulations of the effect of a liquid droplet on a membrane with a finite thickness were made. The numerical results showed that there exists a saturated membrane thickness of the order of millimeter, when the thickness of a membrane is larger than such a value, the membrane can be regarded as a half-infinite body. Further numerical calculations for soft membrane whose thickness is far below the saturated thickness were made. By comparison between the maximum vertical displacement of an ultrathin soft membrane and a half-infinite body, we found that Lester's or Rusanov's solutions for a half-infinite body cannot correctly describe such cases. In other words, the thickness of a soft membrane has great effect on the surface deformation of the ultrathin membrane induced by a liquid droplet.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined effects of underlying substrate and evaporative cooling on the evaporation of sessile liquid droplets.

The evaporation of pinned, sessile droplets resting on finite thickness substrates was investigated numerically by extending the combined field approach to include the thermal properties of the substrate. By this approach, the combined effects of the underlying substrate and the evaporative cooling were characterized. The results show that the influence of the substrate on the droplet evaporati...

متن کامل

Multiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation

This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...

متن کامل

Dynamic and Deformation of a liquid Droplet in a Convective Two-Dimensional Laminar Flow

The objective of this research is to develop an accurate numerical method to be used in showing the deformation of a liquid fuel droplet in a convective field. To simultaneously solve the internal liquid droplet flow field as well as the external gas phase flow field, a nonstaggered rectangular grid system without any coordinate transformation is used. Transition from the gas field to the liqui...

متن کامل

Dynamic and Deformation of a liquid Droplet in a Convective Two-Dimensional Laminar Flow

The objective of this research is to develop an accurate numerical method to be used in showing the deformation of a liquid fuel droplet in a convective field. To simultaneously solve the internal liquid droplet flow field as well as the external gas phase flow field, a nonstaggered rectangular grid system without any coordinate transformation is used. Transition from the gas field to the liqui...

متن کامل

Orientational multiplicity and transitions in liquid crystalline droplets.

Orientation distributions in droplets of liquid crystals with homeotropic anchoring are computed with a simulated annealing algorithm that minimizes the free energy of the Oseen-Frank continuum theory. The droplets exhibit multiple orientational steady states that are separated by finite energy barriers over the entire range of the dimensionless ratio of surface to elastic forces, with maximum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 339 2  شماره 

صفحات  -

تاریخ انتشار 2009